DocumentCode :
1645047
Title :
Bayesian neural network for microarray data
Author :
Liang, Yulan ; George, E. Olusegum ; Kelemen, Arpad
Author_Institution :
Dept. of Math. Sci., Univ. of Memphis, TN, USA
Volume :
1
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
193
Lastpage :
197
Abstract :
We propose Bayesian neural networks (BNN) with structural learning for exploring microarray data in gene expressions. The approach employs representative data and regularization to capture correlation among gene expressions and Bayesian techniques to extract gene expression information from noisy data. The performance was verified with stratified cross-validation and multiple iterated runs
Keywords :
Bayes methods; biology computing; data acquisition; learning (artificial intelligence); multilayer perceptrons; Bayesian neural network; DNA microarrays; data acquisition; gene expressions; microarray data; stratified cross-validation; structural learning; Bayesian methods; DNA; Data mining; Drugs; Fungi; Gene expression; Neural networks; Noise level; Noise measurement; Size measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on
Conference_Location :
Honolulu, HI
ISSN :
1098-7576
Print_ISBN :
0-7803-7278-6
Type :
conf
DOI :
10.1109/IJCNN.2002.1005468
Filename :
1005468
Link To Document :
بازگشت