DocumentCode :
1646161
Title :
Using confidence interval of a regularization network
Author :
Górriz, J.M. ; Puntonet, C. ; Salmerón, Moisés ; Martin-Clemente, Ruben ; Hornillo-Mellado, S.
Author_Institution :
EPS Algeciras, Cadiz Univ., Algeciras, Spain
Volume :
1
fYear :
2004
Firstpage :
343
Abstract :
In this paper we establish new bounds on for the actual risk functional of a new on-line parametric machine for time series forecasting based on Vapnik-Chervonenkis (VC) theory. Using the strong connection between support vector machines (SVM) and Regularization theory (RT), we propose a regularization operator in order to obtain a suitable expansion of radial basis functions (RBFs) with the corresponding expressions for updating neural parameters. This operator seeks for the "flattest" function in a feature space, minimizing the risk functional and controlling the capacity of the learning machine. Finally, we mention some modifications and extensions that can be applied to control neural resources (complexity control) and select relevant input space (suitable expression) to avoid high computational effort.
Keywords :
computational complexity; learning (artificial intelligence); radial basis function networks; risk analysis; support vector machines; Vapnik-Chervonenkis theory; complexity control; confidence interval; control neural resources; feature space; flattest function; input space; learning machine; on-line parametric machine; radial basis functions; regularization network; regularization operator; risk functional; suitable expression; support vector machines; time series forecasting; Kernel; Least squares approximation; Machine learning; Neural networks; Parametric statistics; Quadratic programming; Resource management; Risk management; Support vector machines; Virtual colonoscopy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrotechnical Conference, 2004. MELECON 2004. Proceedings of the 12th IEEE Mediterranean
Print_ISBN :
0-7803-8271-4
Type :
conf
DOI :
10.1109/MELCON.2004.1346868
Filename :
1346868
Link To Document :
بازگشت