DocumentCode :
1648565
Title :
Comparison of MLP and RBF neural networks using deviation signals for indirect adaptive control of a synchronous generator
Author :
Park, Jung-Wook ; Harley, Ronald G. ; Venayagamoorthy, Ganesh K.
Author_Institution :
Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Volume :
1
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
919
Lastpage :
924
Abstract :
This paper compares the performances of a multilayer perceptron neurocontroller and a radial basis function neurocontroller for backpropagation through time based indirect adaptive control of the synchronous generator. Also, the neurocontrollers are compared with the conventional controller for small as well as large disturbances to the power system
Keywords :
adaptive control; backpropagation; multilayer perceptrons; neurocontrollers; power system control; power system transient stability; radial basis function networks; synchronous generators; backpropagation; damping; learning; multilayer perceptron; neurocontrol; radial basis function neural network; synchronous generator; time based indirect adaptive control; transient stability; Adaptive control; Automatic generation control; MIMO; Neural networks; Neurocontrollers; Nonlinear control systems; Nonlinear dynamical systems; Programmable control; Synchronous generators; Voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on
Conference_Location :
Honolulu, HI
ISSN :
1098-7576
Print_ISBN :
0-7803-7278-6
Type :
conf
DOI :
10.1109/IJCNN.2002.1005597
Filename :
1005597
Link To Document :
بازگشت