DocumentCode :
1654303
Title :
Compressive nonstationary spectral estimation using parsimonious random sampling of the ambiguity function
Author :
Jung, Alexander ; Taubock, G. ; Hlawatsch, Franz
Author_Institution :
Inst. of Commun. & Radio-Freq. Eng., Vienna Univ. of Technol., Vienna, Austria
fYear :
2009
Firstpage :
642
Lastpage :
645
Abstract :
We propose a compressive estimator for the discrete Rihaczek spectrum (RS) of a time-frequency sparse, underspread, nonstationary random process. The new estimator uses a compressed sensing technique to achieve a reduction of the number of measurements. The measurements are randomly located samples of the ambiguity function of the observed signal. We provide a bound on the mean-square estimation error and demonstrate the performance of the estimator by means of simulation results. The proposed RS estimator can also be used for estimating the Wigner-Ville spectrum (WVS) since for an underspread process the RS and WVS are almost equal.
Keywords :
estimation theory; mean square error methods; random processes; sampling methods; spectral analysis; RS estimator; Wigner-Ville spectrum; compressed sensing; compressive nonstationary spectral estimation; discrete Rihaczek spectrum; mean-square estimation error; random sampling; Autocorrelation; Compressed sensing; Discrete Fourier transforms; Estimation error; Noise measurement; Radio frequency; Random processes; Sampling methods; Statistics; Time frequency analysis; Nonstationary spectral estimation; Rihaczek spectrum; Wigner-Ville spectrum; basis pursuit; compressed sensing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2009. SSP '09. IEEE/SP 15th Workshop on
Conference_Location :
Cardiff
Print_ISBN :
978-1-4244-2709-3
Electronic_ISBN :
978-1-4244-2711-6
Type :
conf
DOI :
10.1109/SSP.2009.5278493
Filename :
5278493
Link To Document :
بازگشت