DocumentCode :
1654434
Title :
Keyword-Driven SPARQL Query Generation Leveraging Background Knowledge
Author :
Shekarpour, Saeedeh ; Auer, Sören ; Ngomo, A.N. ; Gerber, Daniel ; Hellmann, Sebastian ; Stadler, Claus
Author_Institution :
Inst. fur Inf., Univ. Leipzig, Leipzig, Germany
Volume :
1
fYear :
2011
Firstpage :
203
Lastpage :
210
Abstract :
The search for information on the Web of Data is becoming increasingly difficult due to its dramatic growth. Especially novice users need to acquire both knowledge about the underlying ontology structure and proficiency in formulating formal queries (e. g. SPARQL queries) to retrieve information from Linked Data sources. So as to simplify and automate the querying and retrieval of information from such sources, we present in this paper a novel approach for constructing SPARQL queries based on user-supplied keywords. Our approach utilizes a set of predefined basic graph pattern templates for generating adequate interpretations of user queries. This is achieved by obtaining ranked lists of candidate resource identifiers for the supplied keywords and then injecting these identifiers into suitable positions in the graph pattern templates. The main advantages of our approach are that it is completely agnostic of the underlying knowledge base and ontology schema, that it scales to large knowledge bases and is simple to use. We evaluate17 possible valid graph pattern templates by measuring their precision and recall on 53 queries against DBpedia. Our results show that 8 of these basic graph pattern templates return results with a precision above 70%. Our approach is implemented as a Web search interface and performs sufficiently fast to return instant answers to the user even with large knowledge bases.
Keywords :
Internet; data structures; graph theory; ontologies (artificial intelligence); query processing; DBpedia; Web of data; Web search interface; background knowledge; basic graph pattern templates; information query; information retrieval; information search; keyword-driven SPARQL query generation; knowledge base; linked data sources; ontology proficiency; ontology structure; user queries; Accuracy; Iris; Knowledge based systems; Measurement; Natural languages; Ontologies; Resource description framework; SPARQL query; graph pattern; search;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on
Conference_Location :
Lyon
Print_ISBN :
978-1-4577-1373-6
Electronic_ISBN :
978-0-7695-4513-4
Type :
conf
DOI :
10.1109/WI-IAT.2011.70
Filename :
6040519
Link To Document :
بازگشت