DocumentCode :
1654543
Title :
Choice of Dimension Using Reversible Jump Markov Chain Monte Carlo in the Multidimensional Scaling
Author :
Xiangyun, Qing ; Xingyu, Wang
Author_Institution :
East China Univ. of Sci. & Technol., Shanghai
fYear :
2007
Firstpage :
597
Lastpage :
601
Abstract :
Multidimensional scaling is a powerful tool for dimensionality reduction in the field of pattern recognition and data mining. Based on the bayesian multidimensional scaling (MDS), we consider the problem of determining the number of intrinsic low dimensions of MDS as a model selection problem. A Reversible Jump Markov chain Monte Carlo (RJMCMC) algorithm is proposed for performing low-dimensional coordinate and choice of dimension simultaneously within the Bayesian framework. Experiments results on simulated data and real data are presented to demonstrate the effectiveness of our RJMCMC method.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; data mining; pattern recognition; Bayesian multidimensional scaling; data mining; dimensionality reduction; model selection problem; pattern recognition; reversible jump Markov chain Monte Carlo; Bayesian methods; Data mining; Educational institutions; Electronic mail; Information science; Monte Carlo methods; Multidimensional systems; Pattern recognition; Statistics; Intrinsic Dimension; Multidimensional Scaling; Multivariate Bayesian Statistics; Reversible Jump Markov Chain Monte Carlo;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference, 2007. CCC 2007. Chinese
Conference_Location :
Hunan
Print_ISBN :
978-7-81124-055-9
Electronic_ISBN :
978-7-900719-22-5
Type :
conf
DOI :
10.1109/CHICC.2006.4347477
Filename :
4347477
Link To Document :
بازگشت