• DocumentCode
    1654672
  • Title

    Detection of perinatal hypoxia using time-frequency analysis of heart rate variability signals

  • Author

    Dong, Shuai ; Boashash, Boualem ; Azemi, Ghasem ; Lingwood, Barbara E. ; Colditz, Paul B.

  • Author_Institution
    UQ Centre for Clinical Res., Univ. of Queensland, Herston, QLD, Australia
  • fYear
    2013
  • Firstpage
    939
  • Lastpage
    943
  • Abstract
    This paper presents a time-frequency approach to detect perinatal hypoxia by characterizing the nonstationary nature of heart rate variability (HRV) signals. Quadratic time-frequency distributions (TFDs) are used to represent the HRV signals. Six features based on the instantaneous frequency (IF) of the lower frequency components of HRV signals are selected to establish a classifier using support vector machine. The classifier is trained and tested using the signals recorded from a neonatal piglet model under a controlled hypoxic condition, which provides reliable annotations on the data. The method shows superior performance in the detection of hypoxic epochs with sensitivity (89.8%), specificity (100%) and total accuracy (94.9%) compared with that based on frequency domain features, indicating that nonstationarity should be taken into account for a more accurate assessment of the newborn status with possible hypoxia when analyzing HRV signals.
  • Keywords
    cardiology; medical signal processing; support vector machines; time-frequency analysis; HRV signals; TFD; heart rate variability signals; neonatal piglet model; perinatal hypoxia detection; quadratic time-frequency distributions; support vector machine; time-frequency analysis; Accuracy; Feature extraction; Frequency-domain analysis; Heart rate variability; Kernel; Pediatrics; Support vector machines; heart rate variability; nonstationarity; perinatal hypoxia; time-frequency distribution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
  • Conference_Location
    Vancouver, BC
  • ISSN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2013.6637787
  • Filename
    6637787