DocumentCode :
1657526
Title :
Lifting scheme using smoothing kernels on non-equispaced data
Author :
Damerval, C. ; Jansen, M.
Author_Institution :
Katholieke Univ. Leuven, Leuven, Belgium
fYear :
2009
Firstpage :
165
Lastpage :
168
Abstract :
This paper puts forward a new multiscale decomposition. This can be applied to nonparametric regression, in particular so as to smooth non-equispaced univariate data. We introduce an original version of the lifting scheme which uses smoothing kernels. This multiscale approach can naturally deal with non-equispaced data. Besides we propose an algorithm based on this approach that gives approximations at different scales. This leads to smooth curves corresponding to several degrees of smoothing. We also show experiments on synthetic data and a real example.
Keywords :
estimation theory; statistical distributions; wavelet transforms; lifting scheme; multiscale decomposition; non-equispaced data; nonparametric regression; smoothing kernels; Additive noise; Bandwidth; Design methodology; Kernel; Multiresolution analysis; Noise level; Probability; Smoothing methods; Statistics; Wavelet analysis; Smoothing kernels; lifting scheme; multiscale methods; non-equispaced data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2009. SSP '09. IEEE/SP 15th Workshop on
Conference_Location :
Cardiff
Print_ISBN :
978-1-4244-2709-3
Electronic_ISBN :
978-1-4244-2711-6
Type :
conf
DOI :
10.1109/SSP.2009.5278614
Filename :
5278614
Link To Document :
بازگشت