DocumentCode :
1657531
Title :
Relaxation in L control
Author :
Barron, E.N. ; Jensen, R.
Author_Institution :
Dept. of Math. Sci., Chicago Univ., IL, USA
Volume :
1
fYear :
1994
Firstpage :
50
Abstract :
The relaxation of the optimal control problem with cost functional which is the supremum in time of some function h(t, x, z) is determined. If the original value function is V(t,x)=infζεz ||h(s,ξ(s),ζ(s))||L∞[t,T], then, the relaxed value function is Vˆ(t,x)=inf||||h(s,ξˆ(s),z)||L∞(z;μ(s)) ||L∞[t,T], μεzˆ[t,T] where, for each fixed s ε [t,T], the inner norm is the essential sup of h over zεZ with respect to the probability measure μ(s)
Keywords :
optimal control; probability; L control; cost functional; inner norm; optimal control; probability measure; relaxation; Control systems; Convergence; Electronic switching systems; Equations; Jacobian matrices; Level set; Minimax techniques; Optimal control; Viscosity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on
Conference_Location :
Lake Buena Vista, FL
Print_ISBN :
0-7803-1968-0
Type :
conf
DOI :
10.1109/CDC.1994.411046
Filename :
411046
Link To Document :
بازگشت