Title :
Combining LBP and Adaboost for facial expression recognition
Author :
Zilu, Ying ; Xieyan, Fang
Author_Institution :
Sch. of Inf., Wuyi Univ. Jiangmen, Jiangmen
Abstract :
A novel approach to facial expression recognition based on the combination of local binary pattern (LBP) and Adaboost is proposed. Firstly, facial expression images are processed with LBP operator, which can eliminate the effect of environment lighting in a certain extent and has the powerful capability of texture feature description. And then facial expression features are presented with LBP histograms of expression image which is divided into several blocks. The features with powerful discriminability are selected by a modified Adaboost so as to predigest the design of classifier and shorten the cost time. Finally, the support vector machine (SVM) classifier is used for expression classification. The algorithm is implemented with Matlab and experimented on Japanese female facial expression database(JAFFE database). A facial expression recognition rate of 65.71% for person-independent is obtained and shows the effectiveness of the proposed algorithm.
Keywords :
face recognition; feature extraction; image classification; image texture; visual databases; Adaboost; Japanese female facial expression database; Matlab; SVM; environment lighting; facial expression recognition; local binary pattern; support vector machine; texture feature description; Computer science; Computer vision; Face recognition; Feature extraction; Filtering; Gabor filters; Psychology; Spatial databases; Support vector machine classification; Support vector machines;
Conference_Titel :
Signal Processing, 2008. ICSP 2008. 9th International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-2178-7
Electronic_ISBN :
978-1-4244-2179-4
DOI :
10.1109/ICOSP.2008.4697408