Title :
Discovering hierarchical structure in normal relational data
Author :
Schmidt, Mikkel N. ; Herlau, Tue ; Morup, Morten
Author_Institution :
Dept. of Appl. Math. & Comput. Sci., Tech. Univ. of Denmark, Lyngby, Denmark
Abstract :
Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non-parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional brain connectivity.
Keywords :
data structures; data visualisation; nonparametric statistics; pattern clustering; unsupervised learning; complex data structure; complex data visualization; extracted hierarchy; functional brain connectivity data; hierarchical clustering; hierarchical structure discovery; local heuristics; multifurcating Gibbs fragmentation trees; nonparametric generative model; normal relational data; posterior distribution; statistical saliency assessment; structural similarity; synthetic data; unsupervised learning method; Clustering algorithms; Computational modeling; Correlation; Couplings; Data models; Gaussian distribution; Image color analysis;
Conference_Titel :
Cognitive Information Processing (CIP), 2014 4th International Workshop on
Conference_Location :
Copenhagen
DOI :
10.1109/CIP.2014.6844498