DocumentCode :
1665188
Title :
Selecting parameters to estimate to obtain the best model predictions
Author :
McAuley, Kim B. ; Wu, Shaohua ; Harris, Thomas J.
Author_Institution :
Dept. of Chem. Eng., Queen´´s Univ., Kingston, ON, Canada
fYear :
2010
Firstpage :
161
Lastpage :
166
Abstract :
A methodology is proposed to select parameters for estimation when data contain insufficient information to reliably estimate all model parameters. Parameters are ranked from most estimable to least estimable based on model structure, uncertainties in initial parameter guesses, measurement uncertainties and experimental settings. A new mean-squared error criterion is used to determine the optimal number of parameters to estimate from the ranked list so that the most reliable model predictions can be obtained. The methodology is illustrated using a dynamic chemical reactor model.
Keywords :
mean square error methods; measurement uncertainty; parameter estimation; best model predictions; dynamic chemical reactor model; insufficient information; mean-squared error criterion; measurement uncertainty; parameter estimation; Biological system modeling; Computer languages; Irrigation; Lead; Mathematical model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Modelling, Identification and Control (ICMIC), The 2010 International Conference on
Conference_Location :
Okayama
Print_ISBN :
978-1-4244-8381-5
Electronic_ISBN :
978-0-9555293-3-7
Type :
conf
Filename :
5553575
Link To Document :
بازگشت