Title :
Random features for Kernel Deep Convex Network
Author :
Po-Sen Huang ; Li Deng ; Hasegawa-Johnson, Mark ; Xiaodong He
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
Abstract :
The recently developed deep learning architecture, a kernel version of the deep convex network (K-DCN), is improved to address the scalability problem when the training and testing samples become very large. We have developed a solution based on the use of random Fourier features, which possess the strong theoretical property of approximating the Gaussian kernel while rendering efficient computation in both training and evaluation of the K-DCN with large training samples. We empirically demonstrate that just like the conventional K-DCN exploiting rigorous Gaussian kernels, the use of random Fourier features also enables successful stacking of kernel modules to form a deep architecture. Our evaluation experiments on phone recognition and speech understanding tasks both show the computational efficiency of the K-DCN which makes use of random features. With sufficient depth in the K-DCN, the phone recognition accuracy and slot-filling accuracy are shown to be comparable or slightly higher than the K-DCN with Gaussian kernels while significant computational saving has been achieved.
Keywords :
Gaussian processes; learning (artificial intelligence); random processes; speech recognition; Gaussian kernel; K-DCN; deep learning architecture; kernel deep convex network; phone recognition; random Fourier features; scalability problem; slot-filling accuracy; speech understanding task; Approximation methods; Computer architecture; Error analysis; Kernel; Speech; Training; Vectors; deep learning; kernel regression; random features; spoken language understanding;
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
DOI :
10.1109/ICASSP.2013.6638237