DocumentCode :
1666371
Title :
A simplified proof of the multivariable Popov criterion and an upper bound for the structured singular value with real parameter uncertainty
Author :
Bernstein, Dennis S. ; Haddad, Wassim ; Sparks, Andrew G.
Author_Institution :
Dept. of Aerosp. Eng., Michigan Univ., Ann Arbor, MI, USA
Volume :
3
fYear :
1994
Firstpage :
2139
Abstract :
The Popov absolute stability criterion is traditionally proved using a Lyapunov function and the positive real lemma. In this paper, a simplified proof of the multivariable Popov criterion based upon the multivariable Nyquist criterion is given for the case of one-sided, sector-bounded real parameter uncertainty. A loop-shifting transformation is then used to extend the Popov criterion to two-sided, sector-bounded uncertain matrices. Specialization of this result to norm-bounded uncertain matrices leads to an upper bound for the structured singular value for block-structured, real parameter uncertainty
Keywords :
Nyquist criterion; Popov criterion; absolute stability; matrix algebra; multivariable control systems; Popov absolute stability criterion; block-structured real parameter uncertainty; loop-shifting transformation; multivariable Nyquist criterion; multivariable Popov criterion; norm-bounded uncertain matrices; one-sided sector-bounded real parameter uncertainty; real parameter uncertainty; structured singular value; two-sided sector-bounded uncertain matrices; upper bound; Aerospace engineering; Feedback; Lyapunov method; Robust stability; Stability analysis; Stability criteria; Symmetric matrices; Transfer functions; Uncertain systems; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on
Conference_Location :
Lake Buena Vista, FL
Print_ISBN :
0-7803-1968-0
Type :
conf
DOI :
10.1109/CDC.1994.411416
Filename :
411416
Link To Document :
بازگشت