DocumentCode :
1673968
Title :
On multidimensional system identification
Author :
Zhao, Ping-ya ; He, Zhen-Ya
Author_Institution :
Radio Dept., Southeastern Univ., Nanjing, China
fYear :
1989
Firstpage :
189
Lastpage :
192
Abstract :
Various existing multidimensional system identification theories and techniques are reviewed. Particular attention is given to various modeling and parameter estimation techniques. State space, conditional Markovian simultaneous autoregressive, and finite-order autoregressive moving average methods and their various variants are discussed. Maximum-likelihood, least-squares, and other commonly used techniques are also studied
Keywords :
Markov processes; least squares approximations; multidimensional systems; parameter estimation; state-space methods; conditional Markovian simultaneous autoregressive methods; finite-order autoregressive moving average methods; least-squares methods; maximum likelihood methods; multidimensional system identification; parameter estimation techniques; state space methods; Difference equations; Finite difference methods; Gaussian noise; Maximum likelihood estimation; Multidimensional systems; Parameter estimation; Parametric statistics; Partial differential equations; Predictive models; State-space methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrotechnical Conference, 1989. Proceedings. 'Integrating Research, Industry and Education in Energy and Communication Engineering', MELECON '89., Mediterranean
Conference_Location :
Lisbon
Type :
conf
DOI :
10.1109/MELCON.1989.50014
Filename :
50014
Link To Document :
بازگشت