DocumentCode :
1675239
Title :
On-line broken bars detection diagnosis by parameters estimation
Author :
Bazine, Imène B Ameur ; Bazine, Sadok ; Tnani, Slim ; Champenois, Gérard
Author_Institution :
Lab. d´´Autom. et d´´Inf. Ind., Univ. de Poitiers, Poitiers, France
fYear :
2009
Firstpage :
1
Lastpage :
7
Abstract :
The authors propose a new diagnosis method for on-line broken bars detection by parameters estimation. For predictive detection, Kalman filtering algorithm has been adapted to take into account the on-line parameters deviations in faulty case. Within the framework of the diagnosis of the rotor defects, it is difficult to conduct experimental tests to validate the on-line identification of such default. For this reason, one propose an on-line technique to detection rotor broken bars. This technique was validated by simulation tests using an induction machine simulator. The goal of this identification is to detect a possible variation in the resistance of the bars, signature of a rotor defect. Estimation results show a good agreement and demonstrate the possibility of on-line motor bar´s break detection.
Keywords :
Kalman filters; fault diagnosis; induction motors; parameter estimation; rotors; Kalman filtering algorithm; induction machine simulator; online broken motor bar detection diagnosis; parameter estimation; predictive detection; rotor defects; Bars; Circuit faults; Electrical fault detection; Fault detection; Induction machines; Parameter estimation; Rotors; State-space methods; Stator windings; Testing; Diagnosis; induction motor; modeling; on-line parameter estimation; rotor bars break;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power Electronics and Applications, 2009. EPE '09. 13th European Conference on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4244-4432-8
Electronic_ISBN :
978-90-75815-13-9
Type :
conf
Filename :
5279294
Link To Document :
بازگشت