DocumentCode :
1675523
Title :
Modeling and identification of parallel and feedback nonlinear systems
Author :
Chen, Haiwen
Author_Institution :
Los Alamos Nat. Lab., NM, USA
Volume :
3
fYear :
1994
Firstpage :
2267
Abstract :
Structural classification and parameter estimation (SCPE) methods have been used for studying single-input single-output (SISO) parallel and feedback nonlinear system models from input-output (I-O) measurements. The uniqueness of the I-O mappings of different models and parameter uniqueness of the I-O mapping of a given structural model are evaluated. The former aids in defining the conditions under which different model structures may be differentiated from one another. The latter defines the conditions under which a given model parameter can be uniquely estimated from I-O measurements. SCPE methods presented in this paper can be further developed to study more complicated multi-input multi-output (MIMO) block-structured models which will provide useful techniques for modeling and identifying highly complex nonlinear systems
Keywords :
Volterra series; feedback; nonlinear control systems; parameter estimation; I-O mappings; feedback nonlinear systems; identification; multi-input multi-output block-structured models; parameter estimation; parameter uniqueness; single-input single-output parallel systems; structural classification; Biological system modeling; Control system synthesis; Convolution; Kernel; Linear systems; Nonlinear control systems; Nonlinear systems; Output feedback; Parameter estimation; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on
Conference_Location :
Lake Buena Vista, FL
Print_ISBN :
0-7803-1968-0
Type :
conf
DOI :
10.1109/CDC.1994.411480
Filename :
411480
Link To Document :
بازگشت