DocumentCode :
1678654
Title :
A self-referencing level-set method for image reconstruction from sparse Fourier samples
Author :
Ye, Jong ; Bresler, Yoram ; Moulin, Pierre
Author_Institution :
Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA
Volume :
2
fYear :
2001
Firstpage :
33
Abstract :
We address image estimation from sparse Fourier samples. The problem is formulated as joint estimation of the supports of unknown sparse objects in the image, and pixel values on these supports. The domain and the pixel values are alternately estimated using the level-set method and the conjugate gradient method, respectively. Our level-set evolution shows a unique switching behavior, which stabilizes the level-set evolution and removes the re-initialization steps in conventional level set approaches
Keywords :
Fourier transforms; conjugate gradient methods; image reconstruction; object recognition; optimisation; parameter estimation; set theory; Fourier transform; conjugate gradient method; image estimation; image reconstruction; nonlinear optimization technique; self-referencing level-set method; sparse Fourier samples; Character generation; Fourier transforms; Gradient methods; Image reconstruction; Image sampling; Level set; Magnetic resonance imaging; Paramagnetic resonance; Pixel; Synthetic aperture radar;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2001. Proceedings. 2001 International Conference on
Conference_Location :
Thessaloniki
Print_ISBN :
0-7803-6725-1
Type :
conf
DOI :
10.1109/ICIP.2001.958417
Filename :
958417
Link To Document :
بازگشت