DocumentCode :
1682678
Title :
Tracking HoG Descriptors for Gesture Recognition
Author :
Kaâniche, Mohamed Bécha ; Brémond, François
Author_Institution :
Mediterranean Res. Center, INRA Sophia Antipolis, Sophia Antipolis, France
fYear :
2009
Firstpage :
140
Lastpage :
145
Abstract :
We introduce a new HoG (Histogram of Oriented Gradients) tracker for Gesture Recognition. Our main contribution is to build HoG trajectory descriptors (representing local motion) which are used for gesture recognition. First,we select for each individual in the scene a set of corner points to determine textured regions where to compute 2D HoG descriptors. Second, we track these 2D HoG descriptors in order to build temporal HoG descriptors. Lost descriptors are replaced by newly detected ones. Finally, we extract the local motion descriptors to learn offline a set of given gestures.Then, a new video can be classified according to the gesture occurring in the video. Results shows that the tracker performs well compared to KLT tracker. The generated local motion descriptors are validated through gesture learning-classification using the KTH action database.
Keywords :
gesture recognition; image motion analysis; image recognition; image texture; 2D HoG descriptor; HoG trajectory descriptor; KTH action database; gesture learning-classification; gesture recognition; histogram of oriented gradients; local motion descriptor; temporal HoG descriptor; textured regions; tracking; Databases; Histograms; IEEE members; Karhunen-Loeve transforms; Layout; Machine vision; Motion detection; Surveillance; Tracking; Video sequences; Gesture Recognition; Kalman Filter; Motion Descriptors; Tracking HoG;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Video and Signal Based Surveillance, 2009. AVSS '09. Sixth IEEE International Conference on
Conference_Location :
Genova
Print_ISBN :
978-1-4244-4755-8
Electronic_ISBN :
978-0-7695-3718-4
Type :
conf
DOI :
10.1109/AVSS.2009.26
Filename :
5279581
Link To Document :
بازگشت