DocumentCode :
1682749
Title :
Fully adaptive Gaussian mixture Metropolis-Hastings algorithm
Author :
Luengo, D. ; Martino, Luca
Author_Institution :
Dept. of Circuits & Syst. Eng., Univ. Politec. de Madrid, Madrid, Spain
fYear :
2013
Firstpage :
6148
Lastpage :
6152
Abstract :
Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.
Keywords :
Gaussian processes; Markov processes; Monte Carlo methods; covariance matrices; optimisation; signal processing; Gaussian densities; Markov chain Monte Carlo methods; adaptive Gaussian mixture Metropolis-Hastings algorithm; communications; covariance matrices; generic multimodal target distributions; mean vectors; multidimensional target distributions; recursive rules; signal processing; statistical inference; stochastic optimization; weights; Correlation; Covariance matrices; Markov processes; Monte Carlo methods; Proposals; Signal processing; Signal processing algorithms; Gaussian mixtures; Markov Chain Monte Carlo (MCMC); adaptive Metropolis-Hastings;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6638846
Filename :
6638846
Link To Document :
بازگشت