DocumentCode :
16843
Title :
Artificial-Noise-Aided Secure Multi-Antenna Transmission With Limited Feedback
Author :
Xi Zhang ; McKay, Matthew R. ; Xiangyun Zhou ; Heath, Robert W.
Author_Institution :
Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China
Volume :
14
Issue :
5
fYear :
2015
fDate :
May-15
Firstpage :
2742
Lastpage :
2754
Abstract :
We present an optimized secure multi-antenna transmission approach based on artificial-noise-aided beamforming, with limited feedback from a desired single-antenna receiver. To deal with beamformer quantization errors as well as unknown eavesdropper channel characteristics, our approach is aimed at maximizing throughput under dual performance constraints-a connection outage constraint on the desired communication channel and a secrecy outage constraint to guard against eavesdropping. We propose an adaptive transmission strategy that judiciously selects the wiretap coding parameters, as well as the power allocation between the artificial noise and the information signal. This optimized solution reveals several important differences with respect to solutions designed previously under the assumption of perfect feedback. We also investigate the problem of how to most efficiently utilize the feedback bits. The simulation results indicate that a good design strategy is to use approximately 20% of these bits to quantize the channel gain information, with the remainder to quantize the channel direction, and this allocation is largely insensitive to the secrecy outage constraint imposed. In addition, we find that 8 feedback bits per transmit antenna is sufficient to achieve approximately 90% of the throughput attainable with perfect feedback.
Keywords :
antenna arrays; array signal processing; encoding; optimisation; quantisation (signal); telecommunication security; wireless channels; adaptive transmission strategy; artificial-noise-aided beamforming; artificial-noise-aided secure multiantenna transmission; beamformer quantization errors; channel direction quantization; channel gain information; communication channel; connection outage constraint; limited feedback; power allocation; secrecy outage constraint; single-antenna receiver; throughput maximization; unknown eavesdropper channel characteristics; wiretap coding parameters; Communication channels; Information rates; Noise; Quantization (signal); Receivers; Resource management; Transmitters; Artificial noise; adaptive transmission; limited feedback; physical-layer security; power allocation;
fLanguage :
English
Journal_Title :
Wireless Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-1276
Type :
jour
DOI :
10.1109/TWC.2015.2391261
Filename :
7008552
Link To Document :
بازگشت