Title :
Hierarchical Temporal Memory-based algorithmic trading of financial markets
Author :
Gabrielsson, Patrick ; König, Rikard ; Johansson, Ulf
Author_Institution :
Sch. of Bus. & IT, Univ. of Boras, Boras, Sweden
Abstract :
This paper explores the possibility of using the Hierarchical Temporal Memory (HTM) machine learning technology to create a profitable software agent for trading financial markets. Technical indicators, derived from intraday tick data for the E-mini S&P 500 futures market (ES), were used as features vectors to the HTM models. All models were configured as binary classifiers, using a simple buy-and-hold trading strategy, and followed a supervised training scheme. The data set was divided into a training set, a validation set and three test sets; bearish, bullish and horizontal. The best performing model on the validation set was tested on the three test sets. Artificial Neural Networks (ANNs) were subjected to the same data sets in order to benchmark HTM performance. The results suggest that the HTM technology can be used together with a feature vector of technical indicators to create a profitable trading algorithm for financial markets. Results also suggest that HTM performance is, at the very least, comparable to commonly applied neural network models.
Keywords :
learning (artificial intelligence); neural nets; software agents; stock markets; ANN; HTM; artificial neural networks; buy-and-hold trading strategy; feature vectors; financial markets; hierarchical temporal memory based algorithmic trading; machine learning technology; software agent; supervised training; technical indicators; Brain models; Market research; Network topology; Predictive models; Support vector machine classification; Training;
Conference_Titel :
Computational Intelligence for Financial Engineering & Economics (CIFEr), 2012 IEEE Conference on
Conference_Location :
New York, NY
Print_ISBN :
978-1-4673-1802-0
Electronic_ISBN :
PENDING
DOI :
10.1109/CIFEr.2012.6327784