DocumentCode :
1697041
Title :
Joint topic-document modeling via low-dimensional sparse models
Author :
Kerui Min ; Yi Ma
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
fYear :
2013
Firstpage :
8590
Lastpage :
8594
Abstract :
Topic modeling is a well-known approach for document analysis. In this paper, we propose a new model, and corresponding optimization algorithm for topic modeling. Experimental results on polarity classification demonstrate that the new model provides a more accurate characterization for document corpus, and archived higher classification accuracy compared to Latent Dirichlet Allocation (LDA).
Keywords :
document handling; matrix decomposition; sparse matrices; document analysis; document corpus; joint topic document modeling; latent Dirichlet allocation; low dimensional sparse model; optimization algorithm; polarity classification; Accuracy; Computational modeling; Data models; Joints; Optimization; Resource management; Vectors; non-negative matrix factorization; topic modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6639342
Filename :
6639342
Link To Document :
بازگشت