DocumentCode :
1698063
Title :
Minimal Coverings of Maximal Partial Clones
Author :
Scholzel, K.
Author_Institution :
Inst. fur Math., Univ. Rostock, Rostock
fYear :
2009
Firstpage :
114
Lastpage :
119
Abstract :
A partial function f on a k-element set Ek is a partial Sheffer function if every partial function on Ek is definable in terms of f. Since this holds if and only if f belongs to no maximal partial clone on Ek, a characterization of partial Sheffer functions reduces to finding families of minimal coverings of maximal partial clones on Ek. We show that for each k ges3 there exists a unique minimal covering.
Keywords :
functions; matrix algebra; k-element set; maximal partial clones; partial Sheffer function; unique minimal covering; Cloning; Multivalued logic;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic, 2009. ISMVL '09. 39th International Symposium on
Conference_Location :
Naha, Okinawa
ISSN :
0195-623X
Print_ISBN :
978-1-4244-3841-9
Electronic_ISBN :
0195-623X
Type :
conf
DOI :
10.1109/ISMVL.2009.32
Filename :
5010385
Link To Document :
بازگشت