Title :
Minimal Coverings of Maximal Partial Clones
Author_Institution :
Inst. fur Math., Univ. Rostock, Rostock
Abstract :
A partial function f on a k-element set Ek is a partial Sheffer function if every partial function on Ek is definable in terms of f. Since this holds if and only if f belongs to no maximal partial clone on Ek, a characterization of partial Sheffer functions reduces to finding families of minimal coverings of maximal partial clones on Ek. We show that for each k ges3 there exists a unique minimal covering.
Keywords :
functions; matrix algebra; k-element set; maximal partial clones; partial Sheffer function; unique minimal covering; Cloning; Multivalued logic;
Conference_Titel :
Multiple-Valued Logic, 2009. ISMVL '09. 39th International Symposium on
Conference_Location :
Naha, Okinawa
Print_ISBN :
978-1-4244-3841-9
Electronic_ISBN :
0195-623X
DOI :
10.1109/ISMVL.2009.32