DocumentCode :
1698553
Title :
On right eigenvalues inverse problem of the circulant matrix over quaternion division ring
Author :
Huang Jing-pin ; Tan Yun-long ; Xu Ke-ji
Author_Institution :
Coll. of Sci., Guangxi Univ. for Nat., Nanning, China
fYear :
2013
Firstpage :
90
Lastpage :
94
Abstract :
The circulant matrices have special effects in researching of the control system and other fields. This paper mainly discusses the right eigenvalues inverse problem of the quaternion circulant matrix. We firstly introduce the definition of a quaternion standard element by the characteristics of quaternions similar classes. Next, for any given n quaternions, by using complex representation of a quaternion matrix, it is proved that there exists a quaternion circulant matrix A such that the n quaternions are the right eigenvalues of A. Meanwhile, the expression of general solution for this problem is given.
Keywords :
eigenvalues and eigenfunctions; matrix algebra; control system; eigenvalues inverse problem; quaternion circulant matrix; quaternion division ring; quaternion matrix representation; quaternion standard element; quaternions similar classes; Control systems; Eigenvalues and eigenfunctions; Equations; Inverse problems; Linear systems; Quaternions; Standards; algorithm; expression; inverse problem; quaternion circulant matrix; right eigenvalue;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2013 32nd Chinese
Conference_Location :
Xi´an
Type :
conf
Filename :
6639406
Link To Document :
بازگشت