DocumentCode :
1699932
Title :
Optimal control of hybrid systems
Author :
Hedlund, Sven ; Rantzer, Anders
Author_Institution :
Dept. of Autom. Control, Lund Inst. of Technol., Sweden
Volume :
4
fYear :
1999
fDate :
6/21/1905 12:00:00 AM
Firstpage :
3972
Abstract :
This paper presents a method for optimal control of hybrid systems. An inequality of Bellman type is considered and every solution to this inequality gives a lower bound on the optimal value function. A discretization of this “hybrid Bellman inequality” leads to a convex optimization problem in terms of finite-dimensional linear programming. From the solution of the discretized problem, a value function that preserves the lower bound property can be constructed. An approximation of the optimal feedback control law is given and tried on some examples
Keywords :
feedback; linear programming; optimal control; LP; convex optimization problem; finite-dimensional linear programming; hybrid Bellman inequality; hybrid systems; lower bound; optimal control; optimal feedback control law approximation; optimal value function; Context modeling; Cost function; Dynamic programming; Feedback control; Linear programming; Mathematical model; Optimal control; Switches; Temperature; Thermostats;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1999. Proceedings of the 38th IEEE Conference on
Conference_Location :
Phoenix, AZ
ISSN :
0191-2216
Print_ISBN :
0-7803-5250-5
Type :
conf
DOI :
10.1109/CDC.1999.827981
Filename :
827981
Link To Document :
بازگشت