DocumentCode :
170385
Title :
Automatic video annotation by motion recognition
Author :
Dingbo Duan ; Jian Ma
Author_Institution :
State Key Lab. of Networking & Switching Technol., Beijing Univ. of Posts & Telecommun., Beijing, China
fYear :
2014
fDate :
16-18 May 2014
Firstpage :
144
Lastpage :
148
Abstract :
Video annotation plays an important role in content based video retrieval. In this paper, we propose an automatic method to find out person identity in live video from a fixed camera by making use of a novel contextual information, motion pattern. When subjects move around in the Field Of View (FOV) of a camera, motion measurements of human body are simultaneously captured by two different sensing techniques, including camera and smart phones equipped with inertial sensors. Then classification models are trained to recognize motion pattern from raw motion data. To identify the subject that appeared in video from the camera, a metric of distance is defined to quantitatively measure the similarity between motion sequence recognized from video and each of those from smart phones. When a most similar sequence is detected, identity information related to the corresponding phone is used to annotate video frames, together with time and camera location. To test the feasibility and performance of the proposed method, extensive experiments are conducted, which achieved impressive results.
Keywords :
image classification; image motion analysis; image sequences; video retrieval; FOV; automatic video annotation; classification models; content based video retrieval; contextual information; field of view; inertial sensors; live video; motion measurements; motion pattern recognition; motion recognition; motion sequence recognition; person identity; sensing techniques; smart phones; video frame annotation; Acceleration; Cameras; Feature extraction; Legged locomotion; Sensors; Smart phones; Visualization; motion recognition; person identification; sensor fusion;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Progress in Informatics and Computing (PIC), 2014 International Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4799-2033-4
Type :
conf
DOI :
10.1109/PIC.2014.6972313
Filename :
6972313
Link To Document :
بازگشت