DocumentCode :
1713850
Title :
Cellular Neural Network learning using Multilayer Perceptron
Author :
Vinyoles-Serra, Mireia ; Jankowski, Stanislaw ; Szymanski, Zbigniew
Author_Institution :
La Salle Campus, Univ. Ramon Llull, Barcelona, Spain
fYear :
2011
Firstpage :
214
Lastpage :
217
Abstract :
Using the adequate number of Multilayer Perceptron input, hidden and output layers, the Cellular Neural Network dynamic behavior, when the system converges to a fixed-point, can be reproduced by a Multilayer Perceptron with restrictions. A Multilayer Perceptron can then be defined in order to act as a two neuron Cellular Neural Network and vice-versa. From this, we combine their properties in order to overcome the CNN learning problem.
Keywords :
cellular neural nets; learning (artificial intelligence); multilayer perceptrons; CNN learning problem; cellular neural network learning; multilayer perceptron; Biological neural networks; Cellular neural networks; Convergence; Mathematical model; Multilayer perceptrons; Neurons; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuit Theory and Design (ECCTD), 2011 20th European Conference on
Conference_Location :
Linkoping
Print_ISBN :
978-1-4577-0617-2
Electronic_ISBN :
978-1-4577-0616-5
Type :
conf
DOI :
10.1109/ECCTD.2011.6043320
Filename :
6043320
Link To Document :
بازگشت