DocumentCode :
1718275
Title :
Recent results on compound wire-tap channels
Author :
Liang, Yingbin ; Kramer, Gerhard ; Poor, H. Vincent ; Shamai, Shlomo
Author_Institution :
Dept of Electr. Eng., Univ. of Hawaii, Honolulu, HI
fYear :
2008
Firstpage :
1
Lastpage :
5
Abstract :
The compound wire-tap channel is studied, which is based on Wynerpsilas wire-tap model with both the channel from the source to the destination and the channel from the source to the wire-tapper taking a number of states. No matter which states occur for the two channels, the source wishes to guarantee that the destination decodes its message successfully and that the wire-tapper does not obtain the source message. The semideterministic compound wire-tap channel is first studied, in which the channel from the source to the destination is deterministic and has only one state. The secrecy capacity is obtained. An example parallel Gaussian compound wire-tap channel is then studied, in which both channels have two states. Three schemes are studied, and it is shown that introducing randomness either into the source message or into the encoder achieves the maximal secrecy degree of freedom. Both channels studied in this paper demonstrate that creating an auxiliary input, and hence adding a prefix channel from this auxiliary input to the actual channel input, improves the secrecy rate.
Keywords :
channel capacity; channel estimation; wireless channels; channel input; compound wire-tap channels; encoder; prefix channel; source message; Auxiliary transmitters; Bandwidth; Cities and towns; Decoding; Fading; Gaussian channels; Laboratories; Paper technology; State feedback; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on
Conference_Location :
Cannes
Print_ISBN :
978-1-4244-2643-0
Electronic_ISBN :
978-1-4244-2644-7
Type :
conf
DOI :
10.1109/PIMRC.2008.4699909
Filename :
4699909
Link To Document :
بازگشت