DocumentCode :
1721417
Title :
On the structure of the binary (18,9,6) linear code
Author :
Esmaeili, M.
Author_Institution :
Dept. of Math. Sci., Isfahan Univ. of Technol., Iran
fYear :
2003
Firstpage :
62
Lastpage :
65
Abstract :
Let Em denote the binary (m, m-1, 2) even weight code and ⊖ the Kronecker product operation. A linear code of length m×t containing Em⊖(t,1,t) can be decoded efficiently using a Tanner graph and a trellis diagram together with the Wagner decoding algorithm. Thus, it is important to determine whether a given code contains such a subcode. We show that the (18,9,6) binary quadratic residue code does not contain E6⊖(3,1,3). The maximum minimum distance of such a code is 5.
Keywords :
binary codes; decoding; graph theory; linear codes; residue codes; Kronecker product operation; Tanner graph; Wagner decoding algorithm; binary code; binary linear code; binary quadratic residue code; maximum minimum distance; trellis diagram; Binary codes; Block codes; Decoding; Hamming weight; Linear code; Systems engineering and theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop, 2003. Proceedings. 2003 IEEE
Print_ISBN :
0-7803-7799-0
Type :
conf
DOI :
10.1109/ITW.2003.1216695
Filename :
1216695
Link To Document :
بازگشت