DocumentCode :
1721465
Title :
Fast decoding algorithm for LDPC over GF(2q)
Author :
Barnault, L. ; Declercq, D.
Author_Institution :
ENSEA, Cergy, France
fYear :
2003
Firstpage :
70
Lastpage :
73
Abstract :
We present a modification of belief propagation that enables us to decode LDPC codes defined on high order Galois fields with a complexity that scales as p log2 (p), p being the field order. With this low complexity algorithm, we are able to decode GF(2q) LDPC codes up to a field order value of 256. We show by simulation that ultra-sparse regular LDPC codes in GF(64) and GF(256) exhibit very good performance.
Keywords :
Galois fields; computational complexity; decoding; parity check codes; LDPC codes; belief propagation; complexity; fast decoding algorithm; high order Galois fields; Belief propagation; Binary codes; Decoding; Equations; Galois fields; Parity check codes; Sparse matrices; Tensile stress; Turbo codes; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop, 2003. Proceedings. 2003 IEEE
Print_ISBN :
0-7803-7799-0
Type :
conf
DOI :
10.1109/ITW.2003.1216697
Filename :
1216697
Link To Document :
بازگشت