Title :
CorteXlab: A facility for testing cognitive radio networks in a reproducible environment
Author :
Cardoso, L.S. ; Massouri, Abdelbassat ; Guillon, Benjamin ; Ferrand, Paul ; Hutu, Florin ; Villemaud, Guillaume ; Risset, Tanguy ; Gorce, Jean-Marie
Author_Institution :
INSA-Lyon, Univ. de Lyon, Villeurbanne, France
Abstract :
While many theoretical and simulation works have highlighted the potential gains of cognitive radio, several technical issues still need to be evaluated from an experimental point of view. Deploying complex heterogeneous system scenarios is tedious, time consuming and hardly reproducible. To address this problem, we have developed a new experimental facility, called CorteXlab, that allows complex multi-node cognitive radio scenarios to be easily deployed and tested by anyone in the world. Our objective is not to design new software defined radio (SDR) nodes, but rather to provide a comprehensive access to a large set of high performance SDR nodes. The CorteXlab facility offers a 167 m2 electromagnetically (EM) shielded room and integrates a set of 24 universal software radio peripherals (USRPs) from National Instruments, 18 PicoSDR nodes from Nutaq and 42 IoT-Lab wireless sensor nodes from Hikob. CorteXlab is built upon the foundations of the SensLAB testbed and is based the free and open-source toolkit GNU Radio. Automation in scenario deployment, experiment start, stop and results collection is performed by an experiment controller, called Minus. CorteXlab is in its final stages of development and is already capable of running test scenarios. In this contribution, we show that CorteXlab is able to easily cope with the usual issues faced by other testbeds providing a reproducible experiment environment for CR experimentation.
Keywords :
Internet of Things; cognitive radio; controllers; electromagnetic shielding; software radio; testing; wireless sensor networks; CorteXlab facility; Hikob; IoT-Lab wireless sensor nodes; Minus; National Instruments; Nutaq; PicoSDR nodes; SDR nodes; SensLAB; cognitive radio networks; complex heterogeneous system scenarios; complex multinode cognitive radio scenarios; controller; electromagnetically shielded room; open-source toolkit GNU Radio; reproducible environment; software defined radio; testing facility; universal software radio peripherals; Cognitive radio; Field programmable gate arrays; Interference; MIMO; Orbits; Wireless sensor networks;
Conference_Titel :
Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2014 9th International Conference on
Conference_Location :
Oulu