DocumentCode :
172988
Title :
Detecting image communities
Author :
Esen, Ersin ; Ozkan, Savas ; Atil, I. ; Arabaci, M.A. ; Tankiz, Seda
Author_Institution :
TUBITAK UZAY Image Process. Group, METU Balgat, Ankara, Turkey
fYear :
2014
fDate :
18-20 June 2014
Firstpage :
1
Lastpage :
4
Abstract :
In this work, we propose a novel community detection method that is specifically designed for image communities. We define image community as a coherent subgroup of images within a large set of images. In order to detect image communities, we construct an image graph by utilizing visual affinity between each image pair and then prune most of the links. Instead of affinity values, we prefer ranking of neighboring images and get rid of range mismatch of affinity values. The resulting directed graph is processed to detect the image communities by using the proposed deterministic method. The proposed method is compared against state-of-the-art community detection methods that can operate on directed graphs. In the experiments, we use various sets of images for which ground truths are determined manually. The results indicate that our method significantly outperforms the compared state-of-the-art methods. Furthermore, the proposed method appears to have a consistent performance between sets unlike the compared methods. We believe that the proposed community detection method can be successfully utilized in many different applications.
Keywords :
deterministic algorithms; directed graphs; image recognition; deterministic method; directed graph; image community detection; image graph; image pair; visual affinity; Communities; Computers; Detection algorithms; Equations; Image edge detection; Measurement; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Content-Based Multimedia Indexing (CBMI), 2014 12th International Workshop on
Conference_Location :
Klagenfurt
Type :
conf
DOI :
10.1109/CBMI.2014.6849841
Filename :
6849841
Link To Document :
بازگشت