DocumentCode :
1738079
Title :
Radial-basis-function networks: learning and applications
Author :
Schwenkar, F. ; Kestler, Hans A. ; Palm, Günther
Author_Institution :
Ulm Univ., Germany
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
33
Abstract :
We present different training algorithms for radial basis function (RBF) networks. The behaviour of RBF classifiers in three different pattern recognition applications is presented: the classification of 3-D visual objects, high-resolution electrocardiograms and handwritten digits
Keywords :
electrocardiography; handwritten character recognition; learning (artificial intelligence); medical signal processing; pattern classification; radial basis function networks; 3D visual object classification; RBF classifiers; RBF networks; handwritten digits; high-resolution electrocardiograms; learning; pattern recognition; radial basis function networks; training algorithms; Biological neural networks; Biological system modeling; Brain modeling; Equations; Interpolation; Nervous system; Neurons; Pattern recognition; Polynomials; Radial basis function networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000. Proceedings. Fourth International Conference on
Conference_Location :
Brighton
Print_ISBN :
0-7803-6400-7
Type :
conf
DOI :
10.1109/KES.2000.885756
Filename :
885756
Link To Document :
بازگشت