DocumentCode :
1739141
Title :
Monitoring the formation of kernel-based topographic maps
Author :
Van Hulle, Marc M.
Author_Institution :
Lab. voor Neuro- en Psychofysiologie, Katholieke Univ., Leuven, Belgium
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
241
Abstract :
Topographic maps have attracted the attention of the data mining community since they can be used for representing and visualizing multidimensional data. For applications like these, it is crucial that the maps are free of topological defects. We introduce a new algorithm for monitoring the degree of topology preservation of kernel-based maps during learning. The algorithm is applied to a synthetic example in this article, and a large, real-world example in our companion article
Keywords :
data mining; data visualisation; learning (artificial intelligence); self-organising feature maps; topology; data mining; kernel-based topographic maps; learning; multidimensional data visualization; neural network; self organizing maps; topological defects; topology preservation; Data mining; Data visualization; Electronic mail; Laboratories; Lattices; Monitoring; Multidimensional systems; Neurons; Psychology; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop
Conference_Location :
Sydney, NSW
ISSN :
1089-3555
Print_ISBN :
0-7803-6278-0
Type :
conf
DOI :
10.1109/NNSP.2000.889415
Filename :
889415
Link To Document :
بازگشت