DocumentCode :
1739151
Title :
Visualizing class structure in data using mutual information
Author :
Torkkola, Kari
Author_Institution :
Motorola Inc., Tempe, AZ, USA
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
376
Abstract :
We study linear dimension reducing transforms using maximum mutual information between transformed data and class labels as the criterion to learn the transforms. Renyi quadratic entropy provides a differentiable and computationally feasible criterion on which gradient ascent algorithms can be based without the limitations of methods using only second order statistics, such as PCA or LDA. Application to class structure visualization in exploratory data analysis is presented
Keywords :
data analysis; data reduction; data visualisation; entropy; information theory; neural nets; pattern recognition; Renyi quadratic entropy; class labels; class structure; class structure visualization; exploratory data analysis; gradient ascent algorithms; linear dimension reducing transforms; mutual information; transformed data; transforms; Covariance matrix; Data analysis; Data visualization; Eigenvalues and eigenfunctions; Entropy; Independent component analysis; Linear discriminant analysis; Mutual information; Principal component analysis; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop
Conference_Location :
Sydney, NSW
ISSN :
1089-3555
Print_ISBN :
0-7803-6278-0
Type :
conf
DOI :
10.1109/NNSP.2000.889429
Filename :
889429
Link To Document :
بازگشت