DocumentCode :
1742853
Title :
A constrained clustering algorithm for shape analysis with multiple features
Author :
Marques, Jorge S. ; Abrantes, Arnaldo J.
Author_Institution :
Inst. de Sistemas e Robotica, Inst. Superior Tecnico, Lisbon, Portugal
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
916
Abstract :
This paper extends a class of constrained clustering methods for shape estimation by using the concept of extended features. The extended features consist of edge points and associated image properties, e.g., gradient, texture and color. Experimental results show that the use of extended features improves the performance of the algorithm in the presence of cluttered background
Keywords :
edge detection; feature extraction; image colour analysis; image texture; constrained clustering; edge points; feature extraction; image color; image gradient; image texture; shape estimation; Active contours; Algorithm design and analysis; Clustering algorithms; Clustering methods; Data mining; Feature extraction; Image edge detection; Robustness; Sensor fusion; Shape;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2000. Proceedings. 15th International Conference on
Conference_Location :
Barcelona
ISSN :
1051-4651
Print_ISBN :
0-7695-0750-6
Type :
conf
DOI :
10.1109/ICPR.2000.905586
Filename :
905586
Link To Document :
بازگشت