DocumentCode :
1742886
Title :
Face detection based on generic local descriptors and spatial constraints
Author :
Vogelhuber, Veronika ; Schmid, Cordelia
Author_Institution :
Inst. Nat. de Recherche en Inf. et Autom., Montbonnot, France
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
1084
Abstract :
We present an algorithm for face detection that is based on generic local descriptors (e.g. eyes). A generic descriptor captures the distribution of individual descriptors over a set of samples (training images). This distribution is assumed to be a Gaussian mixture model and is learnt using the minimum description length principle. A descriptor of an unknown image may then be classified as one of the generic local descriptors. Robustness is achieved by using spatial constraints between locations of descriptors. Experiments show very promising results
Keywords :
computer vision; covariance matrices; face recognition; object detection; Gaussian mixture model; face detection; generic local descriptors; minimum description length principle; spatial constraints; unknown image; Application software; Eyes; Face detection; Face recognition; Image databases; Image recognition; Lips; Nose; Robustness; Surveillance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2000. Proceedings. 15th International Conference on
Conference_Location :
Barcelona
ISSN :
1051-4651
Print_ISBN :
0-7695-0750-6
Type :
conf
DOI :
10.1109/ICPR.2000.905660
Filename :
905660
Link To Document :
بازگشت