DocumentCode :
1742919
Title :
Radial basis function networks and complexity regularization in function learning and classification
Author :
Kégl, Balázs ; Krzyak, A. ; Niemann, Heinrich
Author_Institution :
Dept. of Math. & Stat., Queen´´s Univ., Kingston, Ont., Canada
Volume :
2
fYear :
2000
fDate :
2000
Firstpage :
81
Abstract :
We apply complexity regularization to learn normalized radial basis function networks in nonparametric classification. We study convergence and the rates of convergence of the empirically trained networks and verify the results in computer experiments
Keywords :
convergence; covariance matrices; learning (artificial intelligence); nonparametric statistics; pattern classification; radial basis function networks; complexity regularization; empirically trained networks; function learning; nonparametric classification; Approximation error; Computer networks; Convergence; Estimation error; Intelligent networks; Mathematics; Neurons; Radial basis function networks; Statistics; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2000. Proceedings. 15th International Conference on
Conference_Location :
Barcelona
ISSN :
1051-4651
Print_ISBN :
0-7695-0750-6
Type :
conf
DOI :
10.1109/ICPR.2000.906022
Filename :
906022
Link To Document :
بازگشت