DocumentCode :
1751452
Title :
Extension of the Nyquist robust stability margin to systems with nonconvex value sets
Author :
Baab, C.T. ; Cockburn, J.C. ; Latchman, H.A. ; Crisalle, O.D.
Author_Institution :
Dept. of Chem. Eng., Florida Univ., Gainesville, FL, USA
Volume :
2
fYear :
2001
fDate :
2001
Firstpage :
1414
Abstract :
The Nyquist robust stability margin is proposed as a measure of robust stability for systems with affine parametric uncertainty. The work extends the critical-direction theory to include nonconvex critical uncertainty value sets through the introduction of a more general definition of the critical perturbation radius. The approach is specialized to the case of real parametric affine uncertainty models, and it is shown that the critical perturbation radius can be calculated precisely using an explicit map from the parameter space to the Nyquist plane
Keywords :
Nyquist stability; closed loop systems; control system analysis; feedback; robust control; set theory; uncertain systems; Nyquist plane; Nyquist robust stability margin; affine parametric uncertainty; critical perturbation radius; critical-direction theory; nonconvex critical uncertainty value sets; parameter space; Chemical engineering; Electric variables measurement; Feedback control; Frequency domain analysis; Gain measurement; Polynomials; Robust stability; Stability analysis; Transfer functions; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2001. Proceedings of the 2001
Conference_Location :
Arlington, VA
ISSN :
0743-1619
Print_ISBN :
0-7803-6495-3
Type :
conf
DOI :
10.1109/ACC.2001.945922
Filename :
945922
Link To Document :
بازگشت