DocumentCode
1751578
Title
Natural observers for second order lumped and distributed parameter systems using parameter-dependent Lyapunov functions
Author
Demetriou, Michael A.
Author_Institution
Dept. of Mech. Eng., Worcester Polytech. Inst., MA, USA
Volume
3
fYear
2001
fDate
2001
Firstpage
2503
Abstract
The aim of the paper is to present an alternative method for designing natural observers for linear second order systems (lumped and distributed parameter) without resorting to a first order formulation. This has the advantage of utilizing the algebraic structure that second order systems enjoy. The proposed scheme ensures that the derivative of the estimated "position" is indeed the estimate of the "velocity" component. A parameter-dependent Lyapunov function is utilized that ensures exponential convergence of the state estimation errors
Keywords
Hilbert spaces; Lyapunov methods; convergence; distributed parameter systems; linear systems; matrix algebra; multidimensional systems; observers; algebraic structure; distributed parameter systems; exponential convergence; linear second order systems; natural observers; parameter-dependent Lyapunov functions; second order lumped parameter systems; state estimation errors; Convergence; Design methodology; Distributed parameter systems; Flexible structures; Kalman filters; Lyapunov method; Mechanical engineering; Observers; State estimation; Tellurium;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference, 2001. Proceedings of the 2001
Conference_Location
Arlington, VA
ISSN
0743-1619
Print_ISBN
0-7803-6495-3
Type
conf
DOI
10.1109/ACC.2001.946129
Filename
946129
Link To Document