Title :
Natural observers for second order lumped and distributed parameter systems using parameter-dependent Lyapunov functions
Author :
Demetriou, Michael A.
Author_Institution :
Dept. of Mech. Eng., Worcester Polytech. Inst., MA, USA
Abstract :
The aim of the paper is to present an alternative method for designing natural observers for linear second order systems (lumped and distributed parameter) without resorting to a first order formulation. This has the advantage of utilizing the algebraic structure that second order systems enjoy. The proposed scheme ensures that the derivative of the estimated "position" is indeed the estimate of the "velocity" component. A parameter-dependent Lyapunov function is utilized that ensures exponential convergence of the state estimation errors
Keywords :
Hilbert spaces; Lyapunov methods; convergence; distributed parameter systems; linear systems; matrix algebra; multidimensional systems; observers; algebraic structure; distributed parameter systems; exponential convergence; linear second order systems; natural observers; parameter-dependent Lyapunov functions; second order lumped parameter systems; state estimation errors; Convergence; Design methodology; Distributed parameter systems; Flexible structures; Kalman filters; Lyapunov method; Mechanical engineering; Observers; State estimation; Tellurium;
Conference_Titel :
American Control Conference, 2001. Proceedings of the 2001
Conference_Location :
Arlington, VA
Print_ISBN :
0-7803-6495-3
DOI :
10.1109/ACC.2001.946129