• DocumentCode
    1751578
  • Title

    Natural observers for second order lumped and distributed parameter systems using parameter-dependent Lyapunov functions

  • Author

    Demetriou, Michael A.

  • Author_Institution
    Dept. of Mech. Eng., Worcester Polytech. Inst., MA, USA
  • Volume
    3
  • fYear
    2001
  • fDate
    2001
  • Firstpage
    2503
  • Abstract
    The aim of the paper is to present an alternative method for designing natural observers for linear second order systems (lumped and distributed parameter) without resorting to a first order formulation. This has the advantage of utilizing the algebraic structure that second order systems enjoy. The proposed scheme ensures that the derivative of the estimated "position" is indeed the estimate of the "velocity" component. A parameter-dependent Lyapunov function is utilized that ensures exponential convergence of the state estimation errors
  • Keywords
    Hilbert spaces; Lyapunov methods; convergence; distributed parameter systems; linear systems; matrix algebra; multidimensional systems; observers; algebraic structure; distributed parameter systems; exponential convergence; linear second order systems; natural observers; parameter-dependent Lyapunov functions; second order lumped parameter systems; state estimation errors; Convergence; Design methodology; Distributed parameter systems; Flexible structures; Kalman filters; Lyapunov method; Mechanical engineering; Observers; State estimation; Tellurium;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 2001. Proceedings of the 2001
  • Conference_Location
    Arlington, VA
  • ISSN
    0743-1619
  • Print_ISBN
    0-7803-6495-3
  • Type

    conf

  • DOI
    10.1109/ACC.2001.946129
  • Filename
    946129