DocumentCode :
1752614
Title :
A New Method of Data Compression in Multisensor Estimation Fusion
Author :
Xia, Yifan ; Zhu, Yunmin ; Zhou, Jie
Author_Institution :
Dept. of Math., Sichuan Univ., Chengdu
Volume :
1
fYear :
0
fDate :
0-0 0
Firstpage :
1405
Lastpage :
1409
Abstract :
Consider the decentralized estimation of an unknown parameter by bandwidth constrained sensor network with a fusion center. Local sensors make observations which are linearly scaled versions of these parameters corrupted by additive noises. For each sensor, the probability distribution function of the noise is known. In this paper, we propose a new approach that converts the estimation fusion problem to the decision fusion problem. With the methods of decision fusion, we find optimal local sensor compress rules which compress sensor observations into bits. The fusion center combines the transmitted bits from all the local sensors to generate a final estimation of the unknown parameter. Numerical examples show the efficiency of the new method
Keywords :
belief networks; data compression; parameter estimation; sensor fusion; statistical distributions; wireless sensor networks; Bayesian decision fusion; additive noises; data compression; fusion rule; multisensor estimation fusion; optimal sensor rule; parameter estimation; probability distribution function; Additive noise; Bandwidth; Data compression; Intelligent networks; Intelligent sensors; Parameter estimation; Probability distribution; Quantization; Sensor fusion; Wireless sensor networks; Bayesian decision fusion; Parameter estimation; data compression; optimal sensor rule and fusion rule;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on
Conference_Location :
Dalian
Print_ISBN :
1-4244-0332-4
Type :
conf
DOI :
10.1109/WCICA.2006.1712579
Filename :
1712579
Link To Document :
بازگشت