DocumentCode
1754042
Title
Sobolev Approximation in the Quantum Computation Model
Author
Peixin, Ye ; Xiuhua, Yuan
Author_Institution
LPMC, Nankai Univ., Tianjin, China
Volume
1
fYear
2011
fDate
28-29 March 2011
Firstpage
240
Lastpage
243
Abstract
Using a new and elegant reduction approach we derive a lower bound of quantum complexity for the approximation of imbeddings from anisotropic Sobolev classes B(Wpr([0,1]d )) to anisotropic Sobolev space (Wps([0,1]d ) for all 1 ≥ p, q ≤ ∞ . When p≥q we show this bound is optimal by deriving the matching upper bound. In this case the quantum algorithms are not significantly better than the classical deterministic or randomized algorithms.
Keywords
approximation theory; quantum computing; Sobolev approximation; anisotropic Sobolev classes; anisotropic Sobolev space; elegant reduction approach; quantum algorithms; quantum computation model; Approximation algorithms; Approximation methods; Complexity theory; Computational modeling; Computers; Quantum computing; Quantum mechanics; Sobolev imbedding; n-th minimal error; quantum setting;
fLanguage
English
Publisher
ieee
Conference_Titel
Intelligent Computation Technology and Automation (ICICTA), 2011 International Conference on
Conference_Location
Shenzhen, Guangdong
Print_ISBN
978-1-61284-289-9
Type
conf
DOI
10.1109/ICICTA.2011.69
Filename
5750600
Link To Document