• DocumentCode
    1754042
  • Title

    Sobolev Approximation in the Quantum Computation Model

  • Author

    Peixin, Ye ; Xiuhua, Yuan

  • Author_Institution
    LPMC, Nankai Univ., Tianjin, China
  • Volume
    1
  • fYear
    2011
  • fDate
    28-29 March 2011
  • Firstpage
    240
  • Lastpage
    243
  • Abstract
    Using a new and elegant reduction approach we derive a lower bound of quantum complexity for the approximation of imbeddings from anisotropic Sobolev classes B(Wpr([0,1]d )) to anisotropic Sobolev space (Wps([0,1]d ) for all 1 ≥ p, q ≤ ∞ . When p≥q we show this bound is optimal by deriving the matching upper bound. In this case the quantum algorithms are not significantly better than the classical deterministic or randomized algorithms.
  • Keywords
    approximation theory; quantum computing; Sobolev approximation; anisotropic Sobolev classes; anisotropic Sobolev space; elegant reduction approach; quantum algorithms; quantum computation model; Approximation algorithms; Approximation methods; Complexity theory; Computational modeling; Computers; Quantum computing; Quantum mechanics; Sobolev imbedding; n-th minimal error; quantum setting;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Computation Technology and Automation (ICICTA), 2011 International Conference on
  • Conference_Location
    Shenzhen, Guangdong
  • Print_ISBN
    978-1-61284-289-9
  • Type

    conf

  • DOI
    10.1109/ICICTA.2011.69
  • Filename
    5750600