• DocumentCode
    1755037
  • Title

    Uncertainty-Aware Multidimensional Ensemble Data Visualization and Exploration

  • Author

    Haidong Chen ; Song Zhang ; Wei Chen ; Honghui Mei ; Jiawei Zhang ; Mercer, Andrew ; Ronghua Liang ; Huamin Qu

  • Author_Institution
    State Key Lab. of CAD & CG, Zhejiang Univ., Hangzhou, China
  • Volume
    21
  • Issue
    9
  • fYear
    2015
  • fDate
    Sept. 1 2015
  • Firstpage
    1072
  • Lastpage
    1086
  • Abstract
    This paper presents an efficient visualization and exploration approach for modeling and characterizing the relationships and uncertainties in the context of a multidimensional ensemble dataset. Its core is a novel dissimilarity-preserving projection technique that characterizes not only the relationships among the mean values of the ensemble data objects but also the relationships among the distributions of ensemble members. This uncertainty-aware projection scheme leads to an improved understanding of the intrinsic structure in an ensemble dataset. The analysis of the ensemble dataset is further augmented by a suite of visual encoding and exploration tools. Experimental results on both artificial and real-world datasets demonstrate the effectiveness of our approach.
  • Keywords
    data visualisation; dissimilarity-preserving projection technique; multidimensional ensemble dataset; uncertainty-aware multidimensional ensemble data exploration; uncertainty-aware multidimensional ensemble data visualization; visual encoding; visual exploration tools; Bandwidth; Data visualization; Numerical models; Solid modeling; Symmetric matrices; Uncertainty; Visualization; —Ensemble visualization; Ensemble visualization; multidimensional data visualization; uncertainty quantification; uncertainty visualization;
  • fLanguage
    English
  • Journal_Title
    Visualization and Computer Graphics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1077-2626
  • Type

    jour

  • DOI
    10.1109/TVCG.2015.2410278
  • Filename
    7055260