• DocumentCode
    1756681
  • Title

    Calibrated Precision Matrix Estimation for High-Dimensional Elliptical Distributions

  • Author

    Tuo Zhao ; Han Liu

  • Author_Institution
    Dept. of Oper. Res. & Financial Eng., Princeton Univ., Princeton, NJ, USA
  • Volume
    60
  • Issue
    12
  • fYear
    2014
  • fDate
    Dec. 2014
  • Firstpage
    7874
  • Lastpage
    7887
  • Abstract
    We propose a semiparametric method for estimating a precision matrix of high-dimensional elliptical distributions. Unlike most existing methods, our method naturally handles heavy tailness and conducts parameter estimation under a calibration framework, thus achieves improved theoretical rates of convergence and finite sample performance on heavy-tail applications. We further demonstrate the performance of the proposed method using thorough numerical experiments.
  • Keywords
    estimation theory; matrix algebra; statistical distributions; calibrated precision matrix estimation; calibration framework; high dimensional elliptical distributions; parameter estimation; semiparametric method; Convergence; Correlation; Covariance matrices; Estimation; Sparse matrices; Symmetric matrices; Vectors; Calibrated Estimation; Elliptical Distribution; Heavy-tailness; Precision Matrix; Precision matrix; Semiparametric Model; calibrated estimation; elliptical distribution; heavy-tailness; semiparametric model;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2014.2360980
  • Filename
    6913534