DocumentCode
1757554
Title
Characteristic Analysis and Verification of the Magnetic-Field-Modulated Brushless Double-Rotor Machine
Author
Jingang Bai ; Ping Zheng ; Chengde Tong ; Zhiyi Song ; Quanbin Zhao
Author_Institution
Dept. of Electr. Eng., Harbin Inst. of Technol., Harbin, China
Volume
62
Issue
7
fYear
2015
fDate
42186
Firstpage
4023
Lastpage
4033
Abstract
The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM), composed of the stator, the modulating ring rotor, and the permanent-magnet (PM) rotor, is a new power-split device for hybrid electric vehicles (HEVs). Compared with traditional double-rotor machines (DRMs), the MFM-BDRM shows more complicated electromechanical energy conversion relations, due to its special operating principle-the magnetic field modulation principle. To analyze the speed relation in the MFM-BDRM, a diagrammatized method is proposed. It shows that the speeds of stator magnetic field, modulating ring rotor, and PM rotor present a collinear speed characteristic. On this basis, the torque relations of stator, modulating ring rotor, and PM rotor are investigated from the view of a conservative lossless system. Then, a lever-balanced torque map is proposed to analyze their torque characteristic. It shows that the torques of stator, modulating ring rotor, and PM rotor can be calculated by the lever balance principle. The power flow map is further proposed to analyze the power flow characteristic among three ports. In addition, comparison of the MFM-BDRM and the planetary gear shows that the MFM-BDRM can be totally equivalent to an electrical machine and a planetary gear, making it gain a great advantage particularly when the MFM-BDRM is used in HEVs. The electromagnetic performance of MFM-BDRM is investigated by a finite-element method, which shows that the MFM-BDRM has advantages of fine sinusoidal back electromotive force and low torque fluctuation. Finally, the speed and torque analysis and FE results are verified by experiment.
Keywords
brushless DC motors; electric potential; finite element analysis; hybrid electric vehicles; magnetic fields; rotors; stators; diagrammatized method; finite-element method; hybrid electric vehicles; magnetic-field-modulated brushless double-rotor machine; modulating ring rotor; permanent-magnet rotor; power flow; power-split device; sinusoidal back electromotive force; speed analysis; stator; torque analysis; torque fluctuation; Electromagnetics; Gears; Ice; Magnetic fields; Rotors; Stators; Torque; Brushless double-rotor machine (BDRM); characteristic; compound-structure permanent-magnet synchronous machine (CS-PMSM); hybrid electric vehicle (HEV); magnetic-field modulated; magnetic-field modulated (MFM); three-port;
fLanguage
English
Journal_Title
Industrial Electronics, IEEE Transactions on
Publisher
ieee
ISSN
0278-0046
Type
jour
DOI
10.1109/TIE.2014.2381159
Filename
6985659
Link To Document