DocumentCode :
1758588
Title :
Simulation of Expansion of Thermal Shock and Pressure Waves Inducaed by a Streamer Dynamics in Positive DC Corona Discharges
Author :
Kacem, S. ; Ducasse, O. ; Eichwald, O. ; Yousfi, M. ; Meziane, M. ; Sarrette, J.P. ; Charrada, Kamel
Author_Institution :
Unit de Rech. EMIR, Monastir, Tunisia
Volume :
41
Issue :
4
fYear :
2013
fDate :
41365
Firstpage :
942
Lastpage :
947
Abstract :
This paper is devoted to the simulation of the thermal shock and the induced pressure-waves expansion, generated by a dc pin-to-plan corona discharge in the air at ambient temperatures and under atmospheric pressure. The positive dc voltage applied to the tip generates a monofilamentary streamer that crosses the gap from the tip toward the plan. The simulation models are based on the coupling of a 2-D dynamics streamer model with the hydrodynamics conservation equations of a compressible gas. The source term for the gas dynamics equations takes into account the fast-energy relaxation from excited molecules to the random thermal energy. The simulation shows that the streamers generate a thermal shock near the anodic tip, which induces high pressure gradients and finally the gas expansion. The thermal shock is located just in front of the anodic tip, where the injected energy density is the highest. After 0.3 μs, the mean gas temperature increases up to around 800 K in a small volume just in front of the anodic tip while the maximum temperature reaches 1200 K. In addition, two pressure waves, a spherical and a cylindrical one, are induced with a propagation velocity of 370 m s-1 i.e., close to the speed of sound in air.
Keywords :
corona; plasma shock waves; plasma simulation; plasma temperature; 2D dynamic streamer model; DC pin-plan corona discharge; air; ambient temperatures; anodic tip; atmospheric pressure; compressible gas; energy density; fast-energy relaxation; gas dynamics equations; gas expansion; hydrodynamic conservation equations; molecule excitation; monofilamentary streamer; positive DC corona discharges; positive DC voltage; pressure 1 atm; pressure gradients; pressure waves expansion; simulation models; sound speed; thermal energy; thermal shock simulation; velocity propagation; Atmospheric modeling; Discharges (electric); Electric shock; Electrodes; Equations; Mathematical model; Plasma temperature; Corona discharge; gas discharges; hydrodynamics; simulation; streamer;
fLanguage :
English
Journal_Title :
Plasma Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-3813
Type :
jour
DOI :
10.1109/TPS.2013.2249118
Filename :
6479475
Link To Document :
بازگشت