Title :
Superbackscattering Antenna Arrays
Author :
Liberal, Inigo ; Ederra, Inigo ; Gonzalo, Ramon ; Ziolkowski, Richard W.
Author_Institution :
Electr. & Electron. Eng. Dept., Univ. Publica de Navarra, Pamplona, Spain
Abstract :
This paper discusses the theory, design, and practical implementation of superbackscattering antenna arrays. In analogy with Uzkov´s maximal directivity theorem, it is demonstrated that the maximal backscattering cross-section, normalized to the wavelength squared, of a linear array of N isotropic scatterers whose separation tends to zero is N2(N+1)2/(4π). This analytical result is validated via numerical optimization of the excitation coefficients, and the same procedure is utilized to assess the maximal backscattering of arrays of electric Hertzian dipoles (EHDs). It is found that electrically small arrays of two and three EHDs can enhance the backscattering by factors of 6.22 and 22.01, respectively, with respect to the maximum value generated by a single element. In addition, physical realizations of arrays featuring comparable enhancement factors can be straightforwardly designed by using a simple procedure inspired by Yagi-Uda antenna concepts. The practical implementations of such arrays based on copper wires and printed circuit technologies is also addressed.
Keywords :
antenna radiation patterns; antenna theory; backscatter; electromagnetic wave scattering; linear antenna arrays; EHD; copper wires; electric Hertzian dipoles; enhancement factors; excitation coefficients; isotropic scatterers; linear array; maximal backscattering cross-section; maximal directivity theorem; numerical optimization; printed circuit technologies; superbackscattering antenna arrays; Antenna arrays; Antenna theory; Backscatter; Dipole antennas; Directive antennas; Scattering; Antenna theory; Backscattering; antenna theory; backscattering; electrically small antennas; electromagnetic scattering; superdirectivity;
Journal_Title :
Antennas and Propagation, IEEE Transactions on
DOI :
10.1109/TAP.2015.2410787