DocumentCode :
1759067
Title :
Neural Approximations of Analog Joint Source-Channel Coding
Author :
Davoli, Franco ; Mongelli, Maurizio
Author_Institution :
Dept. of Electr., Electron. & Telecommun. Eng., Univ. of Genoa, Genoa, Italy
Volume :
22
Issue :
4
fYear :
2015
fDate :
42095
Firstpage :
421
Lastpage :
425
Abstract :
An estimation setting is considered, where a number of sensors transmit their observations of a physical phenomenon, described by one or more random variables, to a sink over noisy communication channels. The goal is to minimize a quadratic distortion measure (Minimum Mean Square Error - MMSE) under a global power constraint on the sensors´ transmissions. Linear MMSE encoders and decoders, parametrically optimized in encoders´ gains, Shannon-Kotel´nikov mappings, and nonlinear parametric functional approximators (neural networks) are investigated and numerically compared, highlighting subtle differences in sensitivity and achievable performance.
Keywords :
approximation theory; combined source-channel coding; mean square error methods; neural nets; Shannon-Kotel´nikov mappings; analog joint source-channel coding; global power constraint; linear MMSE decoder; linear MMSE encoder; minimum mean square error; neural approximation; nonlinear parametric functional approximators; quadratic distortion measure; Approximation methods; Artificial neural networks; Decoding; Encoding; Nonlinear distortion; Sensors; Spirals; Joint source-channel coding; Shannon–Kotel’nikov mapping; neural networks;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2014.2361402
Filename :
6915669
Link To Document :
بازگشت