Title :
On Joint Source-Channel Coding for a Multivariate Gaussian on a Gaussian MAC
Author :
Floor, Pal Anders ; Kim, Anna N. ; Ramstad, Tor A. ; Balasingham, Ilangko ; Wernersson, Niklas ; Skoglund, Mikael
Author_Institution :
Interventional Center, Univ. of Oslo, Oslo, Norway
Abstract :
In this paper, nonlinear distributed joint source-channel coding (JSCC) schemes for transmission of multivariate Gaussian sources over a Gaussian multiple access channel are proposed and analyzed. The main contribution is a zero-delay JSCC named Distributed Quantizer Linear Coder (DQLC), which performs relatively close the information theoretical bounds, improves when the correlation among the sources increases, and does not level off as the signal-to-noise ratio (SNR) becomes large. Therefore it outperforms any linear solution for sufficiently large SNR. Further an extension of DQLC to an arbitrary code length named Vector Quantizer Linear Coder (VQLC) is analyzed. The VQLC closes in on the performance upper bound as the code length increases and can potentially achieve the bound for any number of independent sources. The VQLC leaves a gap to the bound whenever the sources are correlated, however. JSCC achieving the bound for arbitrary correlation has been found for the bivariate case, but that solution is significantly outperformed by the DQLC/VQLC when there is a low delay constraint. This indicates that different approaches are needed to perform close to the bounds when the code length is high and low. The VQLC/DQLC also apply for bandwidth compression of a multivariate Gaussian transmitted on point-to-point links.
Keywords :
Gaussian channels; combined source-channel coding; linear codes; multi-access systems; nonlinear codes; vector quantisation; Gaussian multiple access channel; JSCC schemes; SNR; VQLC; arbitrary code length; bandwidth compression; distributed quantizer linear coder; independent sources; information theoretical bounds; low delay constraint; multivariate Gaussian sources; nonlinear distributed joint source-channel coding schemes; performance upper bound; point-to-point links; signal-to-noise ratio; vector quantizer linear coder; zero-delay JSCC; Correlation; Delays; Encoding; Nonlinear distortion; Receivers; Signal to noise ratio; Vectors; Joint source-channel coding; asymptotic analysis; bandwidth compression; multiple access channel; multivariate Gaussian; zero-delay;
Journal_Title :
Communications, IEEE Transactions on
DOI :
10.1109/TCOMM.2015.2410774